
www.anl.gov

Using Containerized Software at
Argonne’s Leadership Computing Facility
J. Taylor Childers (Argonne) on behalf of the Data Science Group
jchilders@anl.gov

mailto:jchilders@anl.gov

Argonne Leadership Computing Facility!2

datascience@alcf.anl.gov

Corey Adams Xiao-Yong Jin Murat Keceli Elise Jennings

Alvaro Vazquez
Mayagoitia

Tom Uram

Taylor Childers

Venkat VishwanathWilliam Scullin

Prasanna
Balaprakash

Ganesh Sivaraman Richard Zamora

Adrian Pope Misha Salim

Antonio Villarreal

Bethany Lusch

Murali Emani

Huihuo Zheng

mailto:datascience@alcf.anl.gov

Argonne Leadership Computing Facility

• Containerization and Virtualization have been around for some time

Introduction

!3

Argonne Leadership Computing Facility

• Containerization and Virtualization have been around for some time
• Recently gained popularity on Cloud platforms
• Platforms include Docker, CharlieCloud, Singularity, Shifter, Rocket
• ALCF supports Singularity instead of Docker for security reasons.
• https://www.sylabs.io/singularity/

– Singularity documentation pages
• https://www.singularity-hub.org/

– Singularity Hub connects with a github repo and builds containers for you
• https://www.alcf.anl.gov/user-guides/singularity

– Singularity documentation specific for ALCF
• Singularity is installed on:

– Theta (4,400 Intel KNL nodes x 64 cores)
– Cooley (126 nodes x 2 NVIDIA Teslas)

Introduction

!4

https://www.sylabs.io/singularity/
https://www.singularity-hub.org/
https://www.alcf.anl.gov/user-guides/singularity

Argonne Leadership Computing Facility

• If your container already exists on Docker hub or Singularity
hub, the follow commands can download them on theta logins:

• The Singularity build command requires ‘sudo’ rights when
making local changes to images, which is not allowed for users
on ALCF systems.

• Building custom images must be done elsewhere:
– On your laptop
– On your own system
– On Singularity hub

• Then the image is moved to an ALCF resource

• First you’ll need a singularity hub account
• Second you’ll typically want to install Singularity on your laptop
• Third you can start building images

Building Singularity Containers

!5

thetalogin5:~> singularity build myubuntu.img docker://ubuntu
thetalogin5:~> singularity build myubuntu.img shub://singularityhub/ubuntu

docker://ubuntu

Argonne Leadership Computing Facility

• Goto or create your github account
• Create a new repo like ‘singularity_image_recipes’

Singularity Hub

!6

Argonne Leadership Computing Facility

• Goto or create your github account
• Create a new repo like ‘singularity_image_recipes’

• Goto https://www.singularity-hub.org/login
• Choose to sign in with your ‘github’ account

Singularity Hub

!7

https://www.singularity-hub.org/login

Argonne Leadership Computing Facility

• Goto or create your github account
• Create a new repo like ‘singularity_image_recipes’

• Goto https://www.singularity-hub.org/login
• Choose to sign in with your ‘github’ account
• Go to the ‘My Collections’ part of the singularity hub website
• Click the red button ‘ADD A COLLECTION’
• All your github repos will be listed, select the one you created

above
• click ‘SUBMIT’

Singularity Hub

!8

https://www.singularity-hub.org/login

Argonne Leadership Computing Facility

Singularity Hub

!9

• Goto or create your github account
• Create a new repo like ‘singularity_image_recipes’

• Goto https://www.singularity-hub.org/login
• Choose to sign in with your ‘github’ account
• Go to the ‘My Collections’ part of the singularity hub website
• Click the red button ‘ADD A COLLECTION’
• All your github repos will be listed, select the one you created

above
• click ‘SUBMIT’

https://www.singularity-hub.org/login

Argonne Leadership Computing Facility

Singularity Hub

!10

• Goto or create your github account
• Create a new repo like ‘singularity_image_recipes’

• Goto https://www.singularity-hub.org/login
• Choose to sign in with your ‘github’ account
• Go to the ‘My Collections’ part of the singularity hub website
• Click the red button ‘ADD A COLLECTION’
• All your github repos will be listed, select the one you created

above
• click ‘SUBMIT’
• Now this repo will be listed in your ‘My Collections’ page

https://www.singularity-hub.org/login

Argonne Leadership Computing Facility

Singularity Hub

!11

• Goto or create your github account
• Create a new repo like ‘singularity_image_recipes’

• Goto https://www.singularity-hub.org/login
• Choose to sign in with your ‘github’ account
• Go to the ‘My Collections’ part of the singularity hub website
• Click the red button ‘ADD A COLLECTION’
• All your github repos will be listed, select the one you created

above
• click ‘SUBMIT’
• Now this repo will be listed in your ‘My Collections’ page
• If you click on the repo it will have no images listed
• Now we need to build an image recipe file in our github repo

https://www.singularity-hub.org/login

Argonne Leadership Computing Facility

• Checkout your github repo on your laptop:
– git clone git@github.com:jtchilders/
singularity_image_recipes.git

– cp singularity_image_recipes

• Now create a new recipe in this repo:
– filename must start with Singularity
– Can have extensions like this: Singularity.hello_world

Your First Singularity Recipe

!12

Argonne Leadership Computing Facility

• Checkout your github repo on your laptop:
– git clone git@github.com:jtchilders/
singularity_image_recipes.git

– cp singularity_image_recipes

• Now create a new recipe in this repo:
– filename must start with Singularity
– Can have extensions like this: Singularity.hello_world

• This image uses the centos image from docker hub as a base image
– This CENTOS image is compatible with most of the current DOE

HPC resources

Your First Singularity Recipe

!13

Argonne Leadership Computing Facility

• Checkout your github repo on your laptop:
– git clone git@github.com:jtchilders/
singularity_image_recipes.git

– cp singularity_image_recipes

• Now create a new recipe in this repo:
– filename must start with Singularity
– Can have extensions like this: Singularity.hello_world

• This image uses the centos image from docker hub as a base image
– This CENTOS image is compatible with most of the current DOE

HPC resources
• The ‘setup’ portion is run after the CENTOS image is unpacked on

to the local file system. If you have source code to copy into the
image you can do that now.

Your First Singularity Recipe

!14

Argonne Leadership Computing Facility

• Checkout your github repo on your laptop:
– git clone git@github.com:jtchilders/
singularity_image_recipes.git

– cp singularity_image_recipes

• Now create a new recipe in this repo:
– filename must start with Singularity
– Can have extensions like this: Singularity.hello_world

• This image uses the centos image from docker hub as a base image
– This CENTOS image is compatible with most of the current DOE

HPC resources
• The ‘setup’ portion is run after the CENTOS image is unpacked on

to the local file system. If you have source code to copy into the
image you can do that now. Uses BASH syntax.

• The ‘post’ portion is run after entering the CENTOS image
environment. Uses BASH syntax.

Your First Singularity Recipe

!15

Argonne Leadership Computing Facility

• Checkout your github repo on your laptop:
– git clone git@github.com:jtchilders/
singularity_image_recipes.git

– cp singularity_image_recipes

• Now create a new recipe in this repo:
– filename must start with Singularity
– Can have extensions like this: Singularity.hello_world

• This image uses the centos image from docker hub as a base image
– This CENTOS image is compatible with most of the current DOE

HPC resources
• The ‘setup’ portion is run after the CENTOS image is unpacked on

to the local file system. If you have source code to copy into the
image you can do that now. Uses BASH syntax.

• The ‘post’ portion is run after entering the CENTOS image
environment. Uses BASH syntax.

• The ‘runscript’ portion identifies a script to run when a user calls
– singularity run <image_filename>

Your First Singularity Recipe

!16

Argonne Leadership Computing Facility

• Checkout your github repo on your laptop:
– git clone git@github.com:jtchilders/
singularity_image_recipes.git

– cp singularity_image_recipes

• Now create a new recipe in this repo:
– filename must start with Singularity
– Can have extensions like this: Singularity.hello_world

• This image uses the centos image from docker hub as a base image
– This CENTOS image is compatible with most of the current DOE

HPC resources
• The ‘setup’ portion is run after the CENTOS image is unpacked on

to the local file system. If you have source code to copy into the
image you can do that now. Uses BASH syntax.

• The ‘post’ portion is run after entering the CENTOS image
environment. Uses BASH syntax.

• The ‘runscript’ portion identifies a script to run when a user calls
– singularity run <image_filename>

• The ‘environment’ portion defines environment variables that exist
while the container is running.

Your First Singularity Recipe

!17

Argonne Leadership Computing Facility

• After a ‘git add’, ‘git commit’ & ‘git push’ you should see the status on your singularity hub page should report that
the container is ‘waiting’, which means it is queued for building.

Your First Singularity Recipe

!18

Argonne Leadership Computing Facility

• Then it will change to RUNNING

Your First Singularity Recipe

!19

Argonne Leadership Computing Facility

• If there is a problem it will report ERROR, you can click on ERROR and it will show you a log file.

Your First Singularity Recipe

!20

Argonne Leadership Computing Facility

• Once the container is completed it will show COMPLETE
• Now we can download it on Theta.

Your First Singularity Recipe

!21

Argonne Leadership Computing Facility

• Once the container is completed it will show COMPLETE
• Now we can download it.
• Run on Theta login node:
• singularity build hello_world.simg shub://jtchilders/singularity_image_recipes:hello_world

Your First Singularity Recipe

!22

Argonne Leadership Computing Facility

• Once the container is completed it will show COMPLETE
• Now we can download it.
• Run on Theta login node:
• singularity build hello_world.simg shub://jtchilders/singularity_image_recipes:hello_world
• Now you can ‘run’ the container.
• Using the run command simply runs the ‘%runscript’ specified in the container recipe

Your First Singularity Recipe

!23

Argonne Leadership Computing Facility

• Once the container is completed it will show COMPLETE
• Now we can download it.
• Run on Theta login node:
• singularity build hello_world.simg shub://jtchilders/singularity_image_recipes:hello_world
• Now you can ‘run’ the container.
• Using the run command simply runs the ‘%runscript’ specified in the container recipe
• Otherwise you can enter a shell using ‘singularity shell <image_filename>’

Your First Singularity Recipe

!24

Argonne Leadership Computing Facility

• Once the container is completed it will show COMPLETE
• Now we can download it.
• Run on Theta login node:
• singularity build hello_world.simg shub://jtchilders/singularity_image_recipes:hello_world
• Now you can ‘run’ the container.
• Using the run command simply runs the ‘%runscript’ specified in the container recipe
• Otherwise you can enter a shell using ‘singularity shell <image_filename>’

• One can also run commands inside the container using ‘singularity exec <image_filename> <command>’

Your First Singularity Recipe

!25

Useful for investigating internal
environment issues when building.

Argonne Leadership Computing Facility

• Challenge of using MPI enabled containers on supercomputers
is that MPI libraries are typically custom for each machine.

• Software in the container must link to native libraries to run
properly

An MPI-enabled application

!26

https://goo.gl/VBZAqL

https://goo.gl/VBZAqL

Argonne Leadership Computing Facility

• Challenge of using MPI enabled containers on supercomputers
is that MPI libraries are typically custom for each machine.

• Software in the container must link to native libraries to run
properly

• Similar to previous except MPICH build
• Download code, untar

An MPI-enabled application

!27

https://goo.gl/VBZAqL

https://goo.gl/VBZAqL

Argonne Leadership Computing Facility

• Challenge of using MPI enabled containers on supercomputers
is that MPI libraries are typically custom for each machine.

• Software in the container must link to native libraries to run
properly

• Similar to previous except MPICH build
• Download code, untar
• Then build MPICH using  

--disable-wrapper-rpath
• Then build example MPI application ‘pi.c’

An MPI-enabled application

!28

https://goo.gl/VBZAqL

https://goo.gl/VBZAqL

Argonne Leadership Computing Facility

• Challenge of using MPI enabled containers on supercomputers
is that MPI libraries are typically custom for each machine.

• Software in the container must link to native libraries to run
properly

• Similar to previous except MPICH build
• Download code, untar
• Then build MPICH using  

--disable-wrapper-rpath
• Then build example MPI application ‘pi.c’

• Build MPI applications using ‘mpicc’ or similar
• Without the build flag above, these binaries  

would build the pi.c binary such that it directly  
links to the local MPI libraries

• With the flag, the binary must use LD_LIBRARY_PATH to find
the MPI libaries

• This allows us to override the containers version of MPI with
the system version

An MPI-enabled application

!29

https://goo.gl/VBZAqL

https://goo.gl/VBZAqL

Argonne Leadership Computing Facility

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 2
#COBALT -A datascience

pass container as first argument to script
CONTAINER=$1

Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.3.2-6.0.6.0_3.8__g388ccd5.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

RANKS_PER_NODE=4
TOTAL_RANKS=$(($COBALT_JOBSIZE * $RANKS_PER_NODE))

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
run my contianer like an application, which will run '/myapp/pi'
aprun -n $TOTAL_RANKS -N $RANKS_PER_NODE singularity run -B /opt:/opt:ro $CONTAINER

• Download the image on Theta
• Now create a submit script as follows
• Running the container on Theta requires

one to add the Cray MPI libraries to the
LD_LIBRARY_PATH inside the
container.

• This means the dynamically linked
binary application uses the Cray MPI
library instead of the MPICH library
inside the container.

Run Containerized MPI-app on Theta

!30

https://goo.gl/PU2dy2

https://goo.gl/PU2dy2

Argonne Leadership Computing Facility

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 2
#COBALT -A datascience

pass container as first argument to script
CONTAINER=$1

Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.3.2-6.0.6.0_3.8__g388ccd5.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

RANKS_PER_NODE=4
TOTAL_RANKS=$(($COBALT_JOBSIZE * $RANKS_PER_NODE))

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
run my contianer like an application, which will run '/myapp/pi'
aprun -n $TOTAL_RANKS -N $RANKS_PER_NODE singularity run -B /opt:/opt:ro $CONTAINER

Run Containerized MPI-app on Theta

!31

Swap standard Cray MPICH with an
ABI (Application Binary Interface)
version. The ABI version ensures
codes compiled with different MPI
version are compatible.

https://goo.gl/PU2dy2

https://goo.gl/PU2dy2

Argonne Leadership Computing Facility

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 2
#COBALT -A datascience

pass container as first argument to script
CONTAINER=$1

Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.3.2-6.0.6.0_3.8__g388ccd5.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

RANKS_PER_NODE=4
TOTAL_RANKS=$(($COBALT_JOBSIZE * $RANKS_PER_NODE))

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
run my contianer like an application, which will run '/myapp/pi'
aprun -n $TOTAL_RANKS -N $RANKS_PER_NODE singularity run -B /opt:/opt:ro $CONTAINER

https://goo.gl/PU2dy2

Run Containerized MPI-app on Theta

!32

Add Cray libraries to LD_LBIRARY_PATH

https://goo.gl/PU2dy2

Argonne Leadership Computing Facility

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 2
#COBALT -A datascience

pass container as first argument to script
CONTAINER=$1

Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.3.2-6.0.6.0_3.8__g388ccd5.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

RANKS_PER_NODE=4
TOTAL_RANKS=$(($COBALT_JOBSIZE * $RANKS_PER_NODE))

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
run my contianer like an application, which will run '/myapp/pi'
aprun -n $TOTAL_RANKS -N $RANKS_PER_NODE singularity run -B /opt:/opt:ro $CONTAINER

https://goo.gl/PU2dy2

Run Containerized MPI-app on Theta

!33

In order to pass environment variables in
to the container environment, define
external variables prefixed with
SINGULARITYENV_

https://goo.gl/PU2dy2

Argonne Leadership Computing Facility

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 2
#COBALT -A datascience

pass container as first argument to script
CONTAINER=$1

Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.3.2-6.0.6.0_3.8__g388ccd5.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

RANKS_PER_NODE=4
TOTAL_RANKS=$(($COBALT_JOBSIZE * $RANKS_PER_NODE))

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
run my contianer like an application, which will run '/myapp/pi'
aprun -n $TOTAL_RANKS -N $RANKS_PER_NODE singularity run -B /opt:/opt:ro $CONTAINER

https://goo.gl/PU2dy2

Run Containerized MPI-app on Theta

!34

The aprun command first executes the singularity container then
the application of interest.

In this case, we use the ‘run’ command which directly executes
the pi-executable.

Note the ‘-B’ options which allow the mounting of external paths
into the container environment. The syntax here is
-B <outside_path>:<inside_path>:<permissions>
ro = readonly, rw = readwrite

https://goo.gl/PU2dy2

Argonne Leadership Computing Facility

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 2
#COBALT -A datascience

pass container as first argument to script
CONTAINER=$1

Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.3.2-6.0.6.0_3.8__g388ccd5.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

RANKS_PER_NODE=4
TOTAL_RANKS=$(($COBALT_JOBSIZE * $RANKS_PER_NODE))

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
run my contianer like an application, which will run '/myapp/pi'
aprun -n $TOTAL_RANKS -N $RANKS_PER_NODE singularity run -B /opt:/opt:ro $CONTAINER

https://goo.gl/PU2dy2

Run Containerized MPI-app on Theta

!35

https://goo.gl/PU2dy2

Argonne Leadership Computing Facility

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 2
#COBALT -A datascience

pass container as first argument to script
CONTAINER=$1

Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.3.2-6.0.6.0_3.8__g388ccd5.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

RANKS_PER_NODE=4
TOTAL_RANKS=$(($COBALT_JOBSIZE * $RANKS_PER_NODE))

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
run my contianer like an application, which will run '/myapp/pi'
aprun -n $TOTAL_RANKS -N $RANKS_PER_NODE singularity run -B /opt:/opt:ro $CONTAINER

https://goo.gl/PU2dy2

Run Containerized MPI-app on Theta

!36

https://goo.gl/PU2dy2

Argonne Leadership Computing Facility

• Highly recommended for complex multi-step builds in
which each step takes a bit of time
– This saves time when debugging builds
– keep each step in its own recipe file, building on the last

• As an example, assume we want to build up an
environment with GCC 6 and python 3.6

• We can again start with the CENTOS image which comes
only with gcc 4.8.5 and python 3.6

• First we install the GCC 6
• Then we add Python 3.6 on top
• notice the change in the  

Bootstrap/From

Building on Previous Images

!37

https://goo.gl/KfPsYF

https://goo.gl/fBknSy

https://goo.gl/KfPsYF
https://goo.gl/fBknSy

Argonne Leadership Computing Facility

• Next we add in MPICH again, and a python pi
script

Building on Previous Images

!38

https://goo.gl/uuh6kr

https://goo.gl/uuh6kr

Argonne Leadership Computing Facility

• There is also an example of installing a
container with miniconda, using the intel
channel, with Tensorflow, PyTorch, and Keras

• Used this module to measure Python Import
performance on Lustre versus from within the
container.

Miniconda installation

!39

https://goo.gl/JNjJFh

Argonne Leadership Computing Facility

• File IO on leadership machines is always an issue.
• Python imports can be time consuming with thousands

of ranks loading modules in parallel.

!40

 Singularity Performance on Theta

Argonne Leadership Computing Facility

• File IO on leadership machines is always an issue.
• Python imports can be time consuming with thousands

of ranks loading modules in parallel.
• Using a Miniconda install of Tensorflow/Keras, I tested

the import times for the ‘keras_mnist.py’ test example
• The plots show the performance across a few runs

when running on the Lustre filesystem versus running
inside a container.

• The load time from Lustre varies unpredictably due to
the varying load on the Lustre meta data server.

• The load time from within the container is generally
more than 2x faster.

!41

 Singularity Performance on Theta

Argonne Leadership Computing Facility

• File IO on leadership machines is always an issue.
• Python imports can be time consuming with thousands

of ranks loading modules in parallel.
• Using a Miniconda install of Tensorflow/Keras, I tested

the import times for the ‘keras_mnist.py’ test example
• The plots show the performance across a few runs

when running on the Lustre filesystem versus running
inside a container.

• The load time from Lustre varies unpredictably due to
the varying load on the Lustre meta data server.

• The load time from within the container is generally
more than 2x faster.

!42

 Singularity Performance on Theta

Argonne Leadership Computing Facility!43

Meta-data Performance in Containers
• More generally we’ve seen that containers

help hide excessive meta-data access.
• Lustre only has one meta-data server and

therefore can be a bottleneck for non-
optimized codes.

• We always recommend statically linking
applications for this reason.

• we performed a simple test by doing an
‘os.path.exists()’ call on files that are
either inside a container or directly on
Lustre

• The ‘stat’-ing of files inside the container
compared to Lustre are 7x faster. Spencer Williams

Argonne Leadership Computing Facility

• Use Lustre striping to improve filesystem performance
during training

• First create a directory that will be striped across
multiple Lustre sources

• Then copy the input files into this directory

!44

 Filesystem Customizations for Theta

lfs setstripe -c 50 —stripe-size 8m [samples directory]

cp [dataset files] [samples directory]

Argonne Leadership Computing Facility

• On Theta and Cooley you can find pre-existing
containers here:
-/soft/datascience/singularity/

• On Theta, you’ll find a Miniconda installation of
Tensorflow/PyTorch/Horovod for scalable ML

• On Cooley, you’ll find Tensorflow and PyTorch
containers

• Each have example submit scripts

• More documentation is at:
• https://www.alcf.anl.gov/user-guides/singularity
• https://www.alcf.anl.gov/user-guides/singularity-

cooley

!45

Containers On Theta/Cooley

https://www.alcf.anl.gov/user-guides/singularity
https://www.alcf.anl.gov/user-guides/singularity-cooley
https://www.alcf.anl.gov/user-guides/singularity-cooley

Argonne Leadership Computing Facility

Summary

!46

• Singularity Containers support on Theta/Cooley
• Containers can be derived from Docker images
• Building custom containers must be done off site
• Performance benefits exist related to filesystem meta data access
• Need help? Have Questions? Email: datascience@alcf.anl.gov

